MeerTRAP

more TRAnsients and Pulsars

What is MeerTRAP?

MeerTRAP is a project to continuously use the MeerKAT radio telescope to search the radio sky for pulsars and fast radio transients and to rapidly and accurately locate them. Utilising the excellent sensitivity and sky coverage of MeerTRAP the team will discover many rare and scientifically important pulsar types: relativistic binaries, intermittent emitters, and transitioning systems. Current radio telescopes have only explored the tip of the transients "iceberg" and MeerTRAP will transform our knowledge of these manifestations of extreme physics. It will detect hundreds of new bursts, which will all be well localised, allowing us to identify hosts and distances, greatly enhancing their use as cosmological probes. Localisation also enables measurement of their true fluxes, polarisation, and spectral indices; all of which are crucial to identify their origin. To achieve this we are designing, implementing, and exploiting state-of-the-art hardware and software. We will also use the MeerLICHT optical telescope, which will track MeerKAT, to give us a crucial glimpse of the optical sky immediately before and after any radio transient to further constrain their origin and the associated physics.


Real time transient detection


The MeerTRAP pipeline will detect fast radio transients, such as fast radio bursts, RRATs, and pulsars, in real-time.

Transient localisation


Once a transient has been detected it can be rapidly localised using imaging. This enables rapid follow-up with MeerLICHT and other telescopes.

MeerLICHT partnership


MeerTRAP is partnered with the MeerLICHT optical telescope, a fully robotic telescope that co-points with MeerKAT. This is essential for identifying optical counterparts of fast radio transients, particularly fast radio bursts.



News


MeerTRAP

The Jodrell Bank Centre for Astrophysics

The University of Manchester


This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement number 694745).